Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1367795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645386

RESUMO

Non-photochemical quenching (NPQ) is a protective mechanism used by plants to safely dissipate excess absorbed light energy as heat, minimizing photo-oxidative damage. Although the importance of NPQ as a safety valve for photosynthesis is well-known, the physiological and environmental effects of the heat produced remain unclear because the amount of heat produced by NPQ is considered negligible, and its physiological effects have not been directly observed. Here, we calculated the heat produced by NPQ and evaluated its impact on the leaf and global warming based on simplified models. Our evaluation showed that the heat produced by NPQ in a given leaf area is 63.9 W m-2 under direct sunlight. Under the standard condition, NPQ warms up the leaf at less than 0.1°C, but it could be 1°C under particular conditions with low thermal conductance. We also estimated the thermal radiation of vegetation's NPQ to be 2.2 W m-2 par global averaged surface area. It is only 0.55% of the thermal radiation by the Earth's surface, but still significant in the current climate change response. We further discuss the possible function of NPQ to plant physiology besides the safety valve and provide strategies with artificial modification of the NPQ mechanism to increase food production and mitigate global warming.

5.
Biochim Biophys Acta Bioenerg ; 1864(4): 148986, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270022

RESUMO

Photosystem I (PSI) from the green alga Chlamydomonas reinhardtii, with various numbers of membrane bound antenna complexes (LHCI), has been described in great detail. In contrast, structural characterization of soluble binding partners is less advanced. Here, we used X-ray crystallography and single particle cryo-EM to investigate three structures of the PSI-LHCI supercomplex from Chlamydomonas reinhardtii. An X-ray structure demonstrates the absence of six chlorophylls from the luminal side of the LHCI belts, suggesting these pigments were either physically absent or less stably associated with the complex, potentially influencing excitation transfer significantly. CryoEM revealed extra densities on luminal and stromal sides of the supercomplex, situated in the vicinity of the electron transfer sites. These densities disappeared after the binding of oxidized ferredoxin to PSI-LHCI. Based on these structures, we propose the existence of a PSI-LHCI resting state with a reduced active chlorophyll content, electron donors docked in waiting positions and regulatory binding partners positioned at the electron acceptor site. The resting state PSI-LHCI supercomplex would be recruited to its active form by the availability of oxidized ferredoxin.


Assuntos
Chlamydomonas reinhardtii , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Chlamydomonas reinhardtii/metabolismo , Ferredoxinas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Clorofila/metabolismo
6.
J Photochem Photobiol B ; 244: 112718, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37156084

RESUMO

Nonphotochemical quenching (NPQ) is a crucial mechanism for fine-tuning light harvesting and protecting the photosystem II (PSII) reaction centres from excess light energy in plants and algae. This process is regulated by photoprotective proteins LHCSR1, LHCSR3, and PsbS in green algae, such as Chlamydomonas reinhardtii. The det1-2 phot mutant, which overexpresses these photoprotective proteins, resulting in a significantly higher NPQ response, has been recently discovered in C. reinhardtii. Here, we analysed the physiological impact of this response on algal cells and found that det1-2 phot was capable of efficient growth under high light intensities, where wild-type (WT) cells were unable to survive. The mutant exhibited a smaller PSII cross-section in the dark and showed a detachment of the peripheral light-harvesting complex II (LHCII) antenna in the NPQ state, as suggested by a rise in the chlorophyll fluorescence parameter of photochemical quenching in the dark (qPd > 1). Furthermore, fluorescence decay-associated spectra demonstrated a decreased excitation pressure on PSII, with excess energy being directed toward PSI. The amount of LHCSR1, LHCSR3, and PsbS in the mutant correlated with the magnitude of the protective NPQ response. Overall, the study suggests the mechanism by which the overexpression of photoprotective proteins in det1-2 phot brings about an efficient and effective photoprotective response, enabling the mutant to grow and survive under high light intensities that would otherwise be lethal for WT cells.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Luz , Tilacoides/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Clorofila/metabolismo , Fotossíntese
7.
Plant Cell Physiol ; 64(8): 858-865, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37130092

RESUMO

In green plants, photosystem I (PSI) and photosystem II (PSII) bind to their respective light-harvesting complexes (LHCI and LHCII) to form the PSI-LHCI supercomplex and the PSII-LHCII supercomplex, respectively. These supercomplexes further form megacomplexes, like PSI-PSII and PSII-PSII in Arabidopsis (Arabidopsis thaliana) and spinach to modulate their light-harvesting properties, but not in the green alga Chlamydomonas reinhardtii. Here, we fractionated and characterized the stable rice PSI-PSII megacomplex. The delayed fluorescence from PSI (lifetime ∼25 ns) indicated energy transfer capabilities between the two photosystems (energy spillover) in the rice PSI-PSII megacomplex. Fluorescence lifetime analysis revealed that the slow PSII to PSI energy transfer component was more dominant in the rice PSI-PSII supercomplexes than in Arabidopsis ones, suggesting that PSI and PSII in rice form a megacomplex not directly but through LHCII molecule(s), which was further confirmed by the negatively stained electron microscopy analysis. Our results suggest species diversity in the formation and stability of photosystem megacomplexes, and the stable PSI-PSII supercomplex in rice may reflect its structural adaptation.


Assuntos
Arabidopsis , Oryza , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Oryza/metabolismo , Arabidopsis/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo
8.
Elife ; 122023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36951548

RESUMO

As a ubiquitous picophytoplankton in the ocean and an early-branching green alga, Ostreococcus tauri is a model prasinophyte species for studying the functional evolution of the light-harvesting systems in photosynthesis. Here, we report the structure and function of the O. tauri photosystem I (PSI) supercomplex in low light conditions, where it expands its photon-absorbing capacity by assembling with the light-harvesting complexes I (LHCI) and a prasinophyte-specific light-harvesting complex (Lhcp). The architecture of the supercomplex exhibits hybrid features of the plant-type and the green algal-type PSI supercomplexes, consisting of a PSI core, an Lhca1-Lhca4-Lhca2-Lhca3 belt attached on one side and an Lhca5-Lhca6 heterodimer associated on the other side between PsaG and PsaH. Interestingly, nine Lhcp subunits, including one Lhcp1 monomer with a phosphorylated amino-terminal threonine and eight Lhcp2 monomers, oligomerize into three trimers and associate with PSI on the third side between Lhca6 and PsaK. The Lhcp1 phosphorylation and the light-harvesting capacity of PSI were subjected to reversible photoacclimation, suggesting that the formation of OtPSI-LHCI-Lhcp supercomplex is likely due to a phosphorylation-dependent mechanism induced by changes in light intensity. Notably, this supercomplex did not exhibit far-red peaks in the 77 K fluorescence spectra, which is possibly due to the weak coupling of the chlorophyll a603-a609 pair in OtLhca1-4.


Assuntos
Clorófitas , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/química , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Clorofila , Fotossíntese , Clorófitas/metabolismo
9.
J Phys Chem B ; 126(31): 5855-5865, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35920883

RESUMO

The light-harvesting complex II (LHCII) trimer in plants functions as a major antenna complex and a quencher to protect it from photooxidative damage. Theoretical studies on the structure of an LHCII trimer have demonstrated that excitation energy transfer between chlorophylls (Chls) in LHCII can be modulated by its exquisite conformational fluctuation. However, conformational changes depending on its binding location have not yet been investigated, even though reorganization of protein complexes occurs by physiological regulations. In this study, we investigated conformational differences in LHCII by comparing published structures of an identical LHCII trimer in the three different photosystem supercomplexes from the green alga Chlamydomonas reinhardtii. Our results revealed distinct differences in Chl configurations as well as polypeptide conformations of the LHCII trimers depending on its binding location. We propose that these configurational differences readily modulate the function of LHCII and possibly lead to a change in excitation-energy flow over the photosynthetic supercomplex.


Assuntos
Chlamydomonas reinhardtii , Complexos de Proteínas Captadores de Luz , Sítios de Ligação , Chlamydomonas reinhardtii/metabolismo , Clorofila , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Plantas/metabolismo
11.
Plant Cell Physiol ; 62(7): 1108-1120, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34038564

RESUMO

Photosynthesis is the process conducted by plants and algae to capture photons and store their energy in chemical forms. The light-harvesting, excitation transfer, charge separation and electron transfer in photosystem II (PSII) are the critical initial reactions of photosynthesis and thereby largely determine its overall efficiency. In this review, we outline the rapidly accumulating knowledge about the architectures and assemblies of plant and green algal PSII-light harvesting complex II (LHCII) supercomplexes, with a particular focus on new insights provided by the recent high-resolution cryo-electron microscopy map of the supercomplexes from a green alga Chlamydomonas reinhardtii. We make pair-wise comparative analyses between the supercomplexes from plants and green algae to gain insights about the evolution of the PSII-LHCII supercomplexes involving the peripheral small PSII subunits that might have been acquired during the evolution and about the energy transfer pathways that define their light-harvesting and photoprotective properties.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/imunologia , Clorófitas/genética , Clorófitas/metabolismo , Transferência de Energia , Evolução Molecular , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Plantas/genética , Plantas/metabolismo , Estrutura Terciária de Proteína
12.
J Phys Chem Lett ; 11(18): 7755-7761, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32822182

RESUMO

Major light-harvesting complex (LHCII) trimers in plants induce the thermal dissipation of absorbed excitation energy against photooxidative damage under excess light conditions. LHCII trimers in green algae have been thought to be incapable of energy dissipation without additional quencher proteins, although LHCIIs in plants and green algae are homologous. In this study, we investigated the energy-dissipative capabilities of four distinct types of LHCII trimers isolated from the model green alga Chlamydomonas reinhardtii using spectroscopic analysis. Our results revealed that the LHCII trimers possessing LHCII type II (LHCBM5) and LHCII type IV (LHCBM1) had efficient energy-dissipative capabilities, whereas LHCII type I (LHCBM3/4/6/8/9) and type III (LHCBM2/7) did not. On the basis of the amino acid sequences of LHCBM5 and LHCBM1 compared with the other LHCBMs, we propose that positively charged extra N-terminal amino acid residues mediate the interactions between LHCII trimers to form energy-dissipative states.


Assuntos
Chlamydomonas reinhardtii/química , Complexo de Proteína do Fotossistema II/metabolismo , Chlamydomonas reinhardtii/metabolismo , Processos Fotoquímicos , Complexo de Proteína do Fotossistema II/química
13.
Plant Physiol ; 183(4): 1725-1734, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32546570

RESUMO

Symbiodiniaceae are symbiotic dinoflagellates that provide photosynthetic products to corals. Because corals are distributed across a wide range of depths in the ocean, Symbiodiniaceae species must adapt to various light environments to optimize their photosynthetic performance. However, as few biochemical studies of Symbiodiniaceae photosystems have been reported, the molecular mechanisms of photoadaptation in this algal family remain poorly understood. Here, to investigate the photosynthetic machineries in Symbiodiniaceae, we purified and characterized the PSI supercomplex from the genome-sequenced Breviolum minutum (formerly Symbiodinium minutum). Mass spectrometry analysis revealed 25 light-harvesting complexes (LHCs), including both LHCF and LHCR families, from the purified PSI-LHC supercomplex. Single-particle electron microscopy showed unique giant supercomplex structures of PSI that were associated with the LHCs. Moreover, the PSI-LHC supercomplex contained a significant amount of the xanthophyll cycle pigment diadinoxanthin. Upon high light treatment, B. minutum cells showed increased nonphotochemical quenching, which was correlated with the conversion of diadinoxanthin to diatoxanthin, occurring preferentially in the PSI-LHC supercomplex. The possible role of PSI-LHC in photoprotection in Symbiodiniaceae is discussed.


Assuntos
Dinoflagelados/genética , Genoma de Planta/genética , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo
14.
J Biol Chem ; 295(43): 14537-14545, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32561642

RESUMO

An intriguing molecular architecture called the "semi-crystalline photosystem II (PSII) array" has been observed in the thylakoid membranes in vascular plants. It is an array of PSII-light-harvesting complex II (LHCII) supercomplexes that only appears in low light, but its functional role has not been clarified. Here, we identified PSII-LHCII supercomplexes in their monomeric and multimeric forms in low light-acclimated spinach leaves and prepared them using sucrose-density gradient ultracentrifugation in the presence of amphipol A8-35. When the leaves were acclimated to high light, only the monomeric forms were present, suggesting that the multimeric forms represent a structural adaptation to low light and that disaggregation of the PSII-LHCII supercomplex represents an adaptation to high light. Single-particle EM revealed that the multimeric PSII-LHCII supercomplexes are composed of two ("megacomplex") or three ("arraycomplex") units of PSII-LHCII supercomplexes, which likely constitute a fraction of the semi-crystalline PSII array. Further characterization with fluorescence analysis revealed that multimeric forms have a higher light-harvesting capability but a lower thermal dissipation capability than the monomeric form. These findings suggest that the configurational conversion of PSII-LHCII supercomplexes may serve as a structural basis for acclimation of plants to environmental light.


Assuntos
Chlamydomonas reinhardtii/química , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Folhas de Planta/química , Aclimatação , Chlamydomonas reinhardtii/fisiologia , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/ultraestrutura , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/ultraestrutura , Folhas de Planta/fisiologia , Conformação Proteica , Multimerização Proteica , Tilacoides/química , Tilacoides/metabolismo
15.
Nat Plants ; 5(12): 1320-1330, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768031

RESUMO

Green algae and plants rely on light-harvesting complex II (LHCII) to collect photon energy for oxygenic photosynthesis. In Chlamydomonas reinhardtii, LHCII molecules associate with photosystem II (PSII) to form various supercomplexes, including the C2S2M2L2 type, which is the largest PSII-LHCII supercomplex in algae and plants that is presently known. Here, we report high-resolution cryo-electron microscopy (cryo-EM) maps and structural models of the C2S2M2L2 and C2S2 supercomplexes from C. reinhardtii. The C2S2 supercomplex contains an LhcbM1-LhcbM2/7-LhcbM3 heterotrimer in the strongly associated LHCII, and the LhcbM1 subunit assembles with CP43 through two interfacial galactolipid molecules. The loosely and moderately associated LHCII trimers interact closely with the minor antenna complex CP29 to form an intricate subcomplex bound to CP47 in the C2S2M2L2 supercomplex. A notable direct pathway is established for energy transfer from the loosely associated LHCII to the PSII reaction centre, as well as several indirect routes. Structure-based computational analysis on the excitation energy transfer within the two supercomplexes provides detailed mechanistic insights into the light-harvesting process in green algae.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Complexo de Proteína do Fotossistema II/química , Proteínas de Plantas/química , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efeitos da radiação , Clorofila/metabolismo , Microscopia Crioeletrônica , Transferência de Energia , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica
16.
Photosynth Res ; 142(2): 195-201, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31493286

RESUMO

Light-harvesting complex II (LHCII) absorbs light energy and transfers it primarily to photosystem II in green algae and land plants. Although the trimeric structure of LHCII is conserved between the two lineages, its subunit composition and function are believed to differ significantly. In this study, we purified four LHCII trimers from the green alga Chlamydomonas reinhardtii and analyzed their biochemical properties. We used several preparation methods to obtain four distinct fractions (fractions 1-4), each of which contained an LHCII trimer with different contents of Type I, III, and IV proteins. The pigment compositions of the LHCIIs in the four fractions were similar. The absorption and fluorescence spectra were also similar, although the peak positions differed slightly. These results indicate that this green alga contains four types of LHCII trimer with different biochemical and spectroscopic features. Based on these findings, we discuss the function and structural organization of green algal LHCII antennae.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Multimerização Proteica , Carotenoides/metabolismo , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Subunidades Proteicas/metabolismo , Espectrometria de Fluorescência , Temperatura
17.
J Phys Chem Lett ; 10(13): 3615-3620, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31180687

RESUMO

Reorganization of photosynthetic proteins on the thylakoid membrane is an important regulatory process for photoacclimation in photosynthetic organisms. However, the underlying mechanism has been poorly understood due to the lack of methods to analyze the interactions between membrane proteins. To investigate the mechanism, we demonstrated the binding properties of light-harvesting complex proteins (LHCs) in a photosystem II (PSII) supercomplex regulated by pH conditions, which primarily responded to environmental light conditions, using a thermodynamic dissociation kinetics analysis. The results showed that the strongly bound LHCs (∼60%) were responsive to pH conditions, whereas the moderately and loosely bound LHCs (∼40%) were nonresponsive. This result implies that the pH condition alters the binding properties of LHCs in the PSII supercomplex, inducing the reorganization of protein complexes.

18.
FEBS Lett ; 593(10): 1072-1079, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31017655

RESUMO

Photosystem II (PSII) splits water and drives electron transfer to plastoquinone via photochemical reactions using light energy. It is surrounded by light-harvesting complex II (LHCII) to form the PSII-LHCII supercomplex. Complete characterization of its structure and function has, however, been hampered due to instability of the complex in the presence of detergent. To overcome this problem, we developed a new procedure for purifying the PSII-LHCII supercomplexes of Chlamydomonas reinhardtii employing amphipol A8-35. The obtained supercomplexes showed little LHCII dissociation even 4 days after purification. Oxygen-evolving activity was retained within amphipol if the extrinsic polypeptides were kept associated by betaine. Electron microscopy revealed that this method also improved structural uniformity and that the major organization was C2 S2 M2 L2 .


Assuntos
Fracionamento Químico/métodos , Chlamydomonas reinhardtii/metabolismo , Complexo de Proteína do Fotossistema II/isolamento & purificação , Fotossíntese , Proteínas de Plantas/isolamento & purificação
19.
J Biol Chem ; 294(12): 4304-4314, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670590

RESUMO

Photosystem I (PSI) is a large pigment-protein complex mediating light-driven charge separation and generating a highly negative redox potential, which is eventually utilized to produce organic matter. In plants and algae, PSI possesses outer antennae, termed light-harvesting complex I (LHCI), which increase the energy flux to the reaction center. The number of outer antennae for PSI in the green alga Chlamydomonas reinhardtii is known to be larger than that of land plants. However, their exact number and location remain to be elucidated. Here, applying a newly established sample purification procedure, we isolated a highly pure PSI-LHCI supercomplex containing all nine LHCA gene products under state 1 conditions. Single-particle cryo-EM revealed the 3D structure of this supercomplex at 6.9 Å resolution, in which the densities near the PsaF and PsaJ subunits were assigned to two layers of LHCI belts containing eight LHCIs, whereas the densities between the PsaG and PsaH subunits on the opposite side of the LHCI belt were assigned to two extra LHCIs. Using single-particle cryo-EM, we also determined the 2D projection map of the lhca2 mutant, which confirmed the assignment of LHCA2 and LHCA9 to the densities between PsaG and PsaH. Spectroscopic measurements of the PSI-LHCI supercomplex suggested that the bound LHCA2 and LHCA9 proteins have the ability to increase the light-harvesting energy for PSI. We conclude that the PSI in C. reinhardtii has a larger and more distinct outer-antenna organization and higher light-harvesting capability than that in land plants.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Clorofila/metabolismo , Cristalografia por Raios X , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema I/química , Espectrometria de Fluorescência
20.
Proc Natl Acad Sci U S A ; 115(14): 3722-3727, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555769

RESUMO

Photosynthetic organisms are frequently exposed to light intensities that surpass the photosynthetic electron transport capacity. Under these conditions, the excess absorbed energy can be transferred from excited chlorophyll in the triplet state (3Chl*) to molecular O2, which leads to the production of harmful reactive oxygen species. To avoid this photooxidative stress, photosynthetic organisms must respond to excess light. In the green alga Chlamydomonas reinhardtii, the fastest response to high light is nonphotochemical quenching, a process that allows safe dissipation of the excess energy as heat. The two proteins, UV-inducible LHCSR1 and blue light-inducible LHCSR3, appear to be responsible for this function. While the LHCSR3 protein has been intensively studied, the role of LHCSR1 has been only partially elucidated. To investigate the molecular functions of LHCSR1 in C. reinhardtii, we performed biochemical and spectroscopic experiments and found that the protein mediates excitation energy transfer from light-harvesting complexes for Photosystem II (LHCII) to Photosystem I (PSI), rather than Photosystem II, at a low pH. This altered excitation transfer allows remarkable fluorescence quenching under high light. Our findings suggest that there is a PSI-dependent photoprotection mechanism that is facilitated by LHCSR1.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Fluorescência , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Algas/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/efeitos da radiação , Transporte de Elétrons , Transferência de Energia , Concentração de Íons de Hidrogênio , Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Fotossíntese , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Tilacoides/química , Tilacoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...